Source code for pvlib.iotools.psm3

"""
Get PSM3 TMY
see https://developer.nrel.gov/docs/solar/nsrdb/psm3_data_download/
"""

import io
import requests
import pandas as pd
from json import JSONDecodeError
from pvlib._deprecation import deprecated
from pvlib import tools

NSRDB_API_BASE = "https://developer.nrel.gov"
PSM_URL = NSRDB_API_BASE + "/api/nsrdb/v2/solar/psm3-2-2-download.csv"
TMY_URL = NSRDB_API_BASE + "/api/nsrdb/v2/solar/psm3-tmy-download.csv"
PSM5MIN_URL = NSRDB_API_BASE + "/api/nsrdb/v2/solar/psm3-5min-download.csv"

ATTRIBUTES = (
    'air_temperature', 'dew_point', 'dhi', 'dni', 'ghi', 'surface_albedo',
    'surface_pressure', 'wind_direction', 'wind_speed')
PVLIB_PYTHON = 'pvlib python'

# Dictionary mapping PSM3 response names to pvlib names
VARIABLE_MAP = {
    'GHI': 'ghi',
    'DHI': 'dhi',
    'DNI': 'dni',
    'Clearsky GHI': 'ghi_clear',
    'Clearsky DHI': 'dhi_clear',
    'Clearsky DNI': 'dni_clear',
    'Solar Zenith Angle': 'solar_zenith',
    'Temperature': 'temp_air',
    'Dew Point': 'temp_dew',
    'Relative Humidity': 'relative_humidity',
    'Pressure': 'pressure',
    'Wind Speed': 'wind_speed',
    'Wind Direction': 'wind_direction',
    'Surface Albedo': 'albedo',
    'Precipitable Water': 'precipitable_water',
}

# Dictionary mapping pvlib names to PSM3 request names
# Note, PSM3 uses different names for the same variables in the
# response and the request
REQUEST_VARIABLE_MAP = {
    'ghi': 'ghi',
    'dhi': 'dhi',
    'dni': 'dni',
    'ghi_clear': 'clearsky_ghi',
    'dhi_clear': 'clearsky_dhi',
    'dni_clear': 'clearsky_dni',
    'solar_zenith': 'solar_zenith_angle',
    'temp_air': 'air_temperature',
    'temp_dew': 'dew_point',
    'relative_humidity': 'relative_humidity',
    'pressure': 'surface_pressure',
    'wind_speed': 'wind_speed',
    'wind_direction': 'wind_direction',
    'albedo': 'surface_albedo',
    'precipitable_water': 'total_precipitable_water',
}


[docs] def get_psm3(latitude, longitude, api_key, email, names='tmy', interval=60, attributes=ATTRIBUTES, leap_day=True, full_name=PVLIB_PYTHON, affiliation=PVLIB_PYTHON, map_variables=True, url=None, timeout=30): """ Retrieve NSRDB PSM3 timeseries weather data from the PSM3 API. The NSRDB is described in [1]_ and the PSM3 API is described in [2]_, [3]_, and [4]_. .. versionchanged:: 0.9.0 The function now returns a tuple where the first element is a dataframe and the second element is a dictionary containing metadata. Previous versions of this function had the return values switched. .. versionchanged:: 0.10.0 The default endpoint for hourly single-year datasets is now v3.2.2. The previous datasets can still be accessed (for now) by setting the ``url`` parameter to the original API endpoint (``"https://developer.nrel.gov/api/nsrdb/v2/solar/psm3-download.csv"``). Parameters ---------- latitude : float or int in decimal degrees, between -90 and 90, north is positive longitude : float or int in decimal degrees, between -180 and 180, east is positive api_key : str NREL Developer Network API key email : str NREL API uses this to automatically communicate messages back to the user only if necessary names : str, default 'tmy' PSM3 API parameter specifing year (e.g. ``2020``) or TMY variant to download (e.g. ``'tmy'`` or ``'tgy-2019'``). The allowed values update periodically, so consult the NSRDB references below for the current set of options. interval : int, {60, 5, 15, 30} interval size in minutes, must be 5, 15, 30 or 60. Must be 60 for typical year requests (i.e., tmy/tgy/tdy). attributes : list of str, optional meteorological fields to fetch. If not specified, defaults to ``pvlib.iotools.psm3.ATTRIBUTES``. See references [2]_, [3]_, and [4]_ for lists of available fields. Alternatively, pvlib names may also be used (e.g. 'ghi' rather than 'GHI'); see :const:`REQUEST_VARIABLE_MAP`. To retrieve all available fields, set ``attributes=[]``. leap_day : bool, default : True include leap day in the results. Only used for single-year requests (i.e., it is ignored for tmy/tgy/tdy requests). full_name : str, default 'pvlib python' optional affiliation : str, default 'pvlib python' optional map_variables : bool, default True When true, renames columns of the Dataframe to pvlib variable names where applicable. See variable :const:`VARIABLE_MAP`. url : str, optional API endpoint URL. If not specified, the endpoint is determined from the ``names`` and ``interval`` parameters. timeout : int, default 30 time in seconds to wait for server response before timeout Returns ------- data : pandas.DataFrame timeseries data from NREL PSM3 metadata : dict metadata from NREL PSM3 about the record, see :func:`pvlib.iotools.read_psm3` for fields Raises ------ requests.HTTPError if the request response status is not ok, then the ``'errors'`` field from the JSON response or any error message in the content will be raised as an exception, for example if the `api_key` was rejected or if the coordinates were not found in the NSRDB Notes ----- The required NREL developer key, `api_key`, is available for free by registering at the `NREL Developer Network <https://developer.nrel.gov/>`_. .. warning:: The "DEMO_KEY" `api_key` is severely rate limited and may result in rejected requests. .. warning:: PSM3 is limited to data found in the NSRDB, please consult the references below for locations with available data. Additionally, querying data with < 30-minute resolution uses a different API endpoint with fewer available fields (see [4]_). See Also -------- pvlib.iotools.read_psm3 References ---------- .. [1] `NREL National Solar Radiation Database (NSRDB) <https://nsrdb.nrel.gov/>`_ .. [2] `Physical Solar Model (PSM) v3.2.2 <https://developer.nrel.gov/docs/solar/nsrdb/psm3-2-2-download/>`_ .. [3] `Physical Solar Model (PSM) v3 TMY <https://developer.nrel.gov/docs/solar/nsrdb/psm3-tmy-download/>`_ .. [4] `Physical Solar Model (PSM) v3 - Five Minute Temporal Resolution <https://developer.nrel.gov/docs/solar/nsrdb/psm3-5min-download/>`_ """ # The well know text (WKT) representation of geometry notation is strict. # A POINT object is a string with longitude first, then the latitude, with # four decimals each, and exactly one space between them. longitude = ('%9.4f' % longitude).strip() latitude = ('%8.4f' % latitude).strip() # TODO: make format_WKT(object_type, *args) in tools.py # convert to string to accomodate integer years being passed in names = str(names) # convert pvlib names in attributes to psm3 convention attributes = [REQUEST_VARIABLE_MAP.get(a, a) for a in attributes] # required query-string parameters for request to PSM3 API params = { 'api_key': api_key, 'full_name': full_name, 'email': email, 'affiliation': affiliation, 'reason': PVLIB_PYTHON, 'mailing_list': 'false', 'wkt': 'POINT(%s %s)' % (longitude, latitude), 'names': names, 'attributes': ','.join(attributes), 'leap_day': str(leap_day).lower(), 'utc': 'false', 'interval': interval } # request CSV download from NREL PSM3 if url is None: # determine the endpoint that suits the user inputs if any(prefix in names for prefix in ('tmy', 'tgy', 'tdy')): url = TMY_URL elif interval in (5, 15): url = PSM5MIN_URL else: url = PSM_URL response = requests.get(url, params=params, timeout=timeout) if not response.ok: # if the API key is rejected, then the response status will be 403 # Forbidden, and then the error is in the content and there is no JSON try: errors = response.json()['errors'] except JSONDecodeError: errors = response.content.decode('utf-8') raise requests.HTTPError(errors, response=response) # the CSV is in the response content as a UTF-8 bytestring # to use pandas we need to create a file buffer from the response fbuf = io.StringIO(response.content.decode('utf-8')) return read_psm3(fbuf, map_variables)
[docs] def read_psm3(filename, map_variables=True): """ Read an NSRDB PSM3 weather file (formatted as SAM CSV). The NSRDB is described in [1]_ and the SAM CSV format is described in [2]_. .. versionchanged:: 0.9.0 The function now returns a tuple where the first element is a dataframe and the second element is a dictionary containing metadata. Previous versions of this function had the return values switched. Parameters ---------- filename: str, path-like, or buffer Filename or in-memory buffer of a file containing data to read. map_variables: bool, default True When true, renames columns of the Dataframe to pvlib variable names where applicable. See variable :const:`VARIABLE_MAP`. Returns ------- data : pandas.DataFrame timeseries data from NREL PSM3 metadata : dict metadata from NREL PSM3 about the record, see notes for fields Notes ----- The return is a tuple with two items. The first item is a dataframe with the PSM3 timeseries data. The second item is a dictionary with metadata from NREL PSM3 about the record containing the following fields: * Source * Location ID * City * State * Country * Latitude * Longitude * Time Zone * Elevation * Local Time Zone * Clearsky DHI Units * Clearsky DNI Units * Clearsky GHI Units * Dew Point Units * DHI Units * DNI Units * GHI Units * Solar Zenith Angle Units * Temperature Units * Pressure Units * Relative Humidity Units * Precipitable Water Units * Wind Direction Units * Wind Speed Units * Cloud Type -15 * Cloud Type 0 * Cloud Type 1 * Cloud Type 2 * Cloud Type 3 * Cloud Type 4 * Cloud Type 5 * Cloud Type 6 * Cloud Type 7 * Cloud Type 8 * Cloud Type 9 * Cloud Type 10 * Cloud Type 11 * Cloud Type 12 * Fill Flag 0 * Fill Flag 1 * Fill Flag 2 * Fill Flag 3 * Fill Flag 4 * Fill Flag 5 * Surface Albedo Units * Version Examples -------- >>> # Read a local PSM3 file: >>> df, metadata = iotools.read_psm3("data.csv") # doctest: +SKIP >>> # Read a file object or an in-memory buffer: >>> with open(filename, 'r') as f: # doctest: +SKIP ... df, metadata = iotools.read_psm3(f) # doctest: +SKIP See Also -------- pvlib.iotools.get_psm3 References ---------- .. [1] `NREL National Solar Radiation Database (NSRDB) <https://nsrdb.nrel.gov/>`_ .. [2] `Standard Time Series Data File Format <https://web.archive.org/web/20170207203107/https://sam.nrel.gov/sites/default/files/content/documents/pdf/wfcsv.pdf>`_ """ with tools._file_context_manager(filename) as fbuf: # The first 2 lines of the response are headers with metadata metadata_fields = fbuf.readline().split(',') metadata_values = fbuf.readline().split(',') # get the column names so we can set the dtypes columns = fbuf.readline().split(',') columns[-1] = columns[-1].strip() # strip trailing newline # Since the header has so many columns, excel saves blank cols in the # data below the header lines. columns = [col for col in columns if col != ''] dtypes = dict.fromkeys(columns, float) # all floats except datevec dtypes.update({'Year': int, 'Month': int, 'Day': int, 'Hour': int, 'Minute': int, 'Cloud Type': int, 'Fill Flag': int}) data = pd.read_csv( fbuf, header=None, names=columns, usecols=columns, dtype=dtypes, delimiter=',', lineterminator='\n') # skip carriage returns \r metadata_fields[-1] = metadata_fields[-1].strip() # trailing newline metadata_values[-1] = metadata_values[-1].strip() # trailing newline metadata = dict(zip(metadata_fields, metadata_values)) # the response is all strings, so set some metadata types to numbers metadata['Local Time Zone'] = int(metadata['Local Time Zone']) metadata['Time Zone'] = int(metadata['Time Zone']) metadata['Latitude'] = float(metadata['Latitude']) metadata['Longitude'] = float(metadata['Longitude']) metadata['Elevation'] = int(metadata['Elevation']) # the response 1st 5 columns are a date vector, convert to datetime dtidx = pd.to_datetime(data[['Year', 'Month', 'Day', 'Hour', 'Minute']]) # in USA all timezones are integers tz = 'Etc/GMT%+d' % -metadata['Time Zone'] data.index = pd.DatetimeIndex(dtidx).tz_localize(tz) if map_variables: data = data.rename(columns=VARIABLE_MAP) metadata['latitude'] = metadata.pop('Latitude') metadata['longitude'] = metadata.pop('Longitude') metadata['altitude'] = metadata.pop('Elevation') return data, metadata
parse_psm3 = deprecated(since="0.12.1", name="parse_psm3", alternative="read_psm3")(read_psm3)